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1 Introduction

Description logics are the theoretical basis for the theory of ontologies. They
are widely used to store data (knowledge) and to do reasoning and query tasks
on that data. A lot of research focused on the development of algorithms that
handle those tasks, e.g. [13, 21, 22]. Nevertheless, the management of uncertain
or vague data is still not common in ontologies, though uncertain or vague data
appears very often in applications [17]. Our aim in this paper is to clarify the
enrichment of description logics with uncertainty or vagueness and to precisely
describe the process of the involved tasks on those logics. A good overview
about the topic of this paper is also given in [25].

The paper is organized in the following way. Each section describes a cer-
tain logic. Each section starts with a general introduction and some definitions.
Then we demonstrate how knowledge is stored and interpreted in the logic. And
at the end we show how algorithms (consistency and inference) work on that
particular logic.

We start with classical description logics in the second section. The third
section adds uncertainty and the fourth adds vagueness to a classical description
logic respectively. In this first section we give some basic definitions and explain
the difference between the discussed types of logics.

There are two ways of interpreting data in a non-boolean description logic:
In uncertainty theory, statements have a certain probability to be true or false.
In vagueness or imprecision theory, a statement is formulated in an inexact way.

Example 1

A weather forecast wants to predict something about the weather situation
of tomorrow, rain in particular. Will it rain tomorrow? If so, how much
will it rain? And what’s the probability and intensity of the rain? The
weather forecast wants to store this information in a database (to combine
it with other knowledge and gain new knowledge automatically).

Classical description logics only allow the storage of boolean information,
such as tomorrow it will rain or tomorrow it will not rain.

Uncertainty theory allows to state a probability for a piece of information.
The probability of rain is 90% would mean that in 9 of 10 comparable cases
there will be rain tomorrow. And in 1 of 10 cases it will be dry. In general:
The probability of rain is p would mean that in p of 1 comparable cases
there will be rain tomorrow and not in the other cases.

Vagueness theory allows to state a degree of truth for a piece of information.
The intensity of rain tomorrow is 90% would mean that tomorrow will



be a rather strong thunderstorm. But it will rain tomorrow definitely.
In general: The intensity of rain is p would state the amount of rainfall
compared to the maximum possible.

Statements in vagueness theory are rather hard to describe by values, be-
cause if an exact value would be known (such as the amount of rain in mm) one
could use classical description logics instead. Therefor usually a fuzzy logic is
used instead of a single value. In this paper we will stay with a single value,
since our aim is rather the explanation of processes and less the development of
applications.

The following definitions are for clarification of notation in the next sections.
Definition 1: power set

Let A be an arbitrary set. The power set of A is defined as follows.

P(A)={XcA}

Definition 2: cardinality

Let A = {x1,22,...,2,} be an arbitrary finite set. Then |A| = n is called
the cardinality of A.

2 Description Logic

This section is an introduction to classical description logic (DL). We present a
definition for the description logic ALC and introduce all symbols and wordings,
that are necessary to understand the other sections, where we add uncertainty
and vagueness to DLs. For further details about classical DLs see [2].

Description logics are designed to represent knowledge. The elementary
description consists of three types of atomic expressions. Named individuals
denote the most important objects in the world. Named concepts denote a
certain group of individuals and named roles denote a type of relation between
two individuals.

Definition 3: elementary description

The basis of a description logic are three finite sets Nr, N¢o and Nj, that
contain named roles, named concepts and named individuals respectively.
Each element R € Np is called a named role, sometimes also called an
atomic role. Each element C' € N¢ is called a named concept, sometimes



also called an atomic concept. Each element a € Nj is called a named
individual. The triple (Ng, N¢, Ny) is called an elementary description.

A description logic is build upon those three arbitrary sets. The set N; con-
tains names for single objects, N¢ contains names for an elementary group of
objects and Ny contains names for elementary relations between two objects.
The mapping between these names and the real world objects is made by an
interpretation.

Beside the atomic roles and concepts, description logics give the possibility
to have composite roles and concepts. The sets of all concepts and roles are
denoted with bold letters respectively. Within the description logic ALC, roles
are almost equivalent to named roles, but in more complex description logics
other types of roles can exist.

Definition 4: set of roles

Let (Ng, Nc¢, Ni) be an elementary description. The set of roles over that
elementary description is denoted by R. It contains expressions (and only
those expressions) according to the following rules.

(universal role) U € R
(named roles) R€ Np = R€eR
Each expression R € R is called a role.
Sometimes there is also an empty role (bottom role) E defined separately,

but one can define it also by the restrictions of concepts, e.g. IE.T C L (see
definition of interpretation).

As for the roles, there are also lots of other concepts in ALC beside the
atomic concepts, we will introduce them in definition 5.

Definition 5: set of concepts

Let (Ng, Nc, N1) be a elementary description and let R be the set of roles
over that elementary description. The set of concepts over that elemen-
tary description is denoted by C. It contains expressions (and only those
expressions) according to the following rules.

(top concept) TeC

(bottom concept) lLecC

(named concept) CeNec = CeC
(

set of individuals) ACN; — AeC



(conjunction) C,DeC = CnbeC
(disjunction) C,DeC = CuDeC
(negation) CeC = -CeC
(universal restriction) C € C,Re R = VR.C €C
(existential restriction) C € C,Re R = 3R.C € C

Each expression C' € C is called a concept.

There is no separate set denoted with bold letter for individuals since there
are no composite individuals.

And the symbols used in this context are only expressions, they are not cal-
culable. An interpretation is necessary to enrich these expressions with meaning.

Definition 6: interpretation

Let (Ng, N¢, N1) be an elementary description. Let R be the set of roles
over that elementary description and let C be the set of concepts over that
elementary description.

A function

F:RUCUN; = P (AT x AT)UP (AT)uA?
together with an arbitrary set A7 is called an interpretation if and only if
e RT e P (AT x AT) forall Re R
e CTeP(AT) forall C€C
o aZ € AT for all a € N;

and the following conditions hold for every R € R, C,D € C and A =
{al,...,an} g N].

(universal role) Ul = AT x AT

(top concept) T =A%

(bottom concept) 1T =9

set of individuals ATl ={af,... o

( 1> »'n
(conjunction) (cn DYt =cTnp?
disjunction cuD)f =cTuD?
(disj



(negation) (-t = AT\ CT
(universal restriction) (VR.C)* = {ze AT |Vy ¢ CT = (z,y) ¢ RT}
(existential restriction) (IR.C)* = {zeA?|IyelCt = (z,y) € RT}

The tuple Z = (AI, oI) is called an interpretation over (Ng, N¢, Ny) with
the universe of discourse AZ. And -Z is called interpretation function.

Sometimes the universe of discourse AT is also called domain. We will
give a short example for a universe of discourse. In later examples we reduce
the attention from the concrete universe of discourse and will assume that the
universe of discourse consists of named individuals only.

Example 2

Given the following elementary description.

NR = {r}
Ne = {A,B}
Ny ={a,b,c}

An interpretation Z = (A%, 1) over (Ng,N¢, Ny) with the universe of
discourse AZ = {1,2, 3} could be defined by the following mappings.

rf = {(1’ 3)7 (37 3)}

AT =1{1,3}
B” = {1}
af =1

b’ =2
=3

It is sufficient to define an interpretation only by its mapping of the el-
ementary description. For all other roles and concepts, the interpretation is
determined by this. We will show it in the following theorem.

Theorem 1

Let Z = (AZ%,-F) be an interpretation over the elementary description
(Ngr, N, Np) with a universe of discourse AL, Let J = (AY,-7) be an-
other interpretation over the same elementary description with the same
universe of discourse AY = A7 such that the following equations hold.

e RT =RJ forall R € N



o CT =Y for all C € N¢
o af =a7 foralla € Ny

Then RT = R7 and CZ =CY forall R€ R and C € C.

Nevertheless, we will give now a few examples for the interpretation of com-
posite concepts.

Example 3

Let Z = (AI7 ~I) be the interpretation from example 2 with universe of
discourse AT and elementary description (Ng, Nc, N7). Then these are
some examples for mappings of composite concepts.

(anB)”" = {1}
(BU-A)T ={1,2}
Gr.a)t ={1,3}
)

Next, we will define a knowledge base (KB). A KB consists of axioms. Ter-
minological axioms express general rules that say something about the general
relation of concepts and roles, whereas assertional axioms state which named
individuals belong to a certain concept or role.

Definition 7: axioms

Let C be a set of concepts. For every two concepts C, D € C, the expres-
sion C C D is called a general concept inclusion (GCI). A TBox, denoted
by T, is a finite set of GCIs,i.e. TC{CCD|C,DeC}. CCDeT
and D C C € T for two concepts C, D € C, we can shortly denote this by
C =D € T. Each axiom ® € T is called a terminological axiom.

Let (Ng, N¢, N1) be an elementary description. Let R be the set of roles
and C be the set of concepts over that signature. For every individ-
ual @ € Ny and every concept C € C, the expression a : C is called
a concept assertion. For every two individuals a,b € N; and every role
R € R, the expression (a,b) : R is called a role assertion. An ABox, de-
noted by A, is a finite set of concept assertions and role assertions, i.e.
Ac{a:C|lae N;,CeC}U{(a,b): R|a,be N;,R e R}. Each axiom
¢ € A is called an assertional axiom.

A tuple K = (T, A) is called a knowledge base (KB), if and only if it consists
of a set of terminological axioms (TBox) T and a set of assertional axioms

(ABox) A.



We will now give an example for a knowledge base. Notice, that the knowl-
edge base is independent of an interpretation.

Example 4

Given the following elementary description.

Ng = {r}
Ne = {AvB}
N; ={a,b,c}

Then the following is a knowledge base over this elementary description.

T={
—-BLC Jr.T,
Ir{a,b} C L

A knowledge base is designed to store knowledge about a specific real world
domain. To use this knowledge for computational purposes, it should be free of
contradictions. If a knowledge base is free of contradictions, we call it consistent.
We can not be sure that every information in a consistent knowledge base is
correct, but we can say that there must be something wrong in an inconsistent
knowledge base. Definition 8 describes the relation between the axioms and the
interpretation.

Definition 8: model

Let (Ng, N¢, N1) be an elementary description. Let R be the set of roles
over that elementary description and let C be the set of concepts over
that elementary description. Let Z = (AZ,.Z) be an interpretation over
(Nr, Nc, Ni).

e Let C, D € C be two concepts.
In 7 holds the general concept inclusion C' T D (denoted Z |= C' C D)
if and only if CT C DZ.



e Let TC{CC D|C,D e C} be a TBox.
In Z holds the TBox 7 (denoted Z = T)
if and only if Z = ® for every GCI & € T.

e Let a € Ny be an individual and let C € C be a concept.
In 7 holds the concept assertion a : C' (denoted Z = a : C)
if and only if a € CZ.

e Let a,b € Ny be two individuals and let R € R be a role.
In 7 holds the role assertion (a,b) : R (denoted Z = (a,b) : R)
if and only if (aZ,b%) € RT.

elet AC{a:C|ae N;,CeC}U{(a,b):R|a,be Ni,C € C} be
an ABox.
In Z holds the ABox A (denoted Z = A)
if and only if Z = ¢ for every assertion ¢ € A.

e Let K = (T,.A) be a knowledge base.
In 7 holds the knowledge base K (denoted Z |= K)
ifand only if Z =T and 7 |= A.

If 7 E K, then Z is called a model of K. If a knowledge base K is given
and there exists at least one interpretation Z such that Z |= K, then K is
called consistent.

The interpretation Z from example 2 and 3 is not a model of the knowledge
base K from example 4, i.e. Z & K. We can see this by looking at the axiom
b: (AUB). For the interpretation Z is defined b = 2 and

(auB)" =aTUBT = {1,3} U {1} = {1,3}
does not contain 2, so b ¢ (ALIB)”.
We will now give an example of another interpretation, that is a model of
the knowledge base from example 4. From now on, we will no longer explicitly

state the universe of discourse and will always assume that it is equal to the
named individuals AT = Nj.

Example 5

Let (Ng, N¢, N1) be the elementary description and K = (7,.4) be the
knowledge base from example 4. Let now Z be an interpretation over
(Ng, N¢, Ny) with the following mappings.

r = {(av C)v (C7 C)}
AT ={a,c}
BY = {a,b}



We will now show that Z = K by showing that Z = ® for each axiom
® € T and then showing that Z |= ¢ for each axiom ¢ € A.

(-B)* = {c} C{a,c} = 3. T)"
(Arfa, b)) =0C0= (L)
ac{a}=(anB)"
b € {a,b,c} = (AUB)T
c € {a,b,c} = (vr.A)*
(a,¢) € {(a,¢), (c,¢)} ==
(c,c) € {(a,¢), (c,c)} =

Notice that we didn’t show how we found this interpretation that models
the given knowledge base. In general it is easier to just determine if a given KB
is consistent or not than to explicitly find a concrete interpretation that models
it [1].

There exist several algorithms to either determine if an interpretation mod-
els a knowledge base or to compute an interpretation from a given knowledge
base that is a model for it. With those algorithms, i.e. tableau algorithm, the
consistency of a knowledge base is determinable. For further details about pro-
grams see [9)].

Another important task for knowledge bases is to infer new knowledge, that
is stored only implicitly in the KB. As for the consistency, there exist a lot of
algorithms for inference. We will not explain these algorithms here and refer to
[27].

Definition 9: inference

Let (Ng, N¢, N1) be an elementary description. Let R be the set of roles
over that elementary description and let C be the set of concepts over that
elementary description. Let K = (T,.4) be a consistent knowledge base.

A terminological axiom ® € {C C D | C,D € C} is a logical consequence
of K, denoted by K |= @, if and only if for all Z = K also Z |= (T U{®}, A).

An assertional axiom ¢ € {a : C | a € N;,C € C}U{(a,b) : R | a,b €
N1, C € C} is a logical consequence of I, denoted by K = ¢, if and only if
forall T =K also Z |= (T, AU {¢}).

Notice that you could infer anything from an inconsistent knowledge base,
because there is no interpretation that models the knowledge base, thus there



is no interpretation that models the knowledge base with any additional axiom.
Instead, one can choose consistent subsets of knowledge bases and infer on them.

We will now give some examples of inferred knowledge that could be gained
from the knowledge base introduced in example 4. We will not do this in an
algorithmic way, but only explain the plausibility of those logical consequences.

Example 6

Let (Ng, N¢, N1) be the elementary description and K = (7,.4) be the
knowledge base from example 4. Then the following axioms are inferable.

a:(AMB)Ea:A
a:(AMB)=a:B
{c:VrA (c,c):r}t=c:A

The first two logical consequences are obvious. The third requires a bit
more consideration. The axiom c : Vr.A states that for all tuples (c,z) : r,
it must also be = : A. And hence, since (c,c) : r, it must also be c : A.
There are other consequences derivable from the given knowledge base.
Since Jr.{a,b} C L, there can not exist a tuple (z,y) : r with y # c. We
will show more logical consequences of this knowledge base in example 8.

This section gave a short overview about classical description logics. The
next sections will extend this approach with the management of uncertainty and
vagueness respectively.

3 Uncertainty Theory

Description logics can be enriched with the management of uncertainty. An
axiom is uncertain, if it is unknown whether the axiom is correct or wrong, but
one can state a certain probability or at least a range of trust. There are a
lot of different modeling approaches for uncertainty theory such as probabilistic
logic and possibilistic logic. And there are also different algorithms to optimize
reasoning or other tasks in specific cases. [15] We will not take into account
each of them, but sometimes remark a hint to other possibilities of handling a
certain problem.

In this section, we give an introduction only to probabilistic logics with a

probabilistic distribution of worlds. That is, each axiom gets assigned a certain
probability to be true (and false otherwise).

10



Definition 10: possible worlds

Let (Ng, N¢, N1) be an elementary description. In uncertainty theory, for a
fixed universe of discourse (we will assume N7 as the universe of discourse),
an interpretation is called a possible world. The set of all possible worlds
is denoted by 1.

I:={Z|Z is an interpretation over (Ng, N, Ny)}

A mapping 7 : I — [0,1] with

d r@) =1

Tel

is called a probability distribution of possible worlds over (Ng, N¢, Ny).

Notice that the definition of 7 is not dependent on a given interpretation
or knowledge base, only an elementary description is necessary. We will later
introduce an uncertain knowledge base to restrict 7.

Sometimes 7 is not defined as a probability distribution and the constraint
> zer ™(Z) = 1 is replaced by maxzeyn(Z) = 1. With that constraint, one gets
a possibility value for each world to be the true one [8].

Notice also that the amount of possible worlds is increasing exponentially
and even for the very small example from the previous section, there are 2'°.
But at least it is a finite number. Nevertheless, the computation of all worlds
is not possible for practical issues. For optimization tasks we refer to [10].

Theorem 2

Let (Ng,N¢, N;) be an elementary description. Let I be the set of all
possible worlds.

1| = 2N INT LN 9l N1 NG|

This theorem is easy to validate, because for each named concept there are
|N;| individuals that could either be part of the concept or not. And for each
named role there are |Ny| - |Ny| pairs of individuals that could either be part of
the role or not.

In uncertainty theory, axioms are affixed with a value that describes the
probability of the axiom to be true. In probabilistic logic, this is only a single
value. In possibilistic logic, this is a range of values. And there exist other
many-valued logics to denote different notions of probability [16]. In this paper,
we restrain uncertainty theory to probabilistic logic, where only probabilistic
constraints are added to axioms. Such a constraint states that an axiom is true
with a certain probability and false otherwise.

11



Definition 11: uncertain axioms

Let C be a set of concepts. For every two concepts C;, D € C and every
p € [0,1], the expression Pr(C' C D) = p is called a probabilistic concept
inclusion (PrCI). An uncertain TBox, denoted by Ty, is a finite set of PrClIs.

Tu c{Pr(CCD)=p|C,DeC,pe01]}
Each axiom ® € Ty, is called an uncertain terminological axiom.

Let (Ng, N¢, N1) be an elementary description. Let R be the set of roles
and C be the set of concepts over that elementary description. For ev-
ery individual a € Nj, every concept C € C and every p € [0,1], the
expression Pr(a : C') = p is called a probabilistic concept assertion. For
every two individuals a,b € Ny, every role R € R and every p € [0,1], the
expression Pr((a,b) : R) = p is called a probabilistic role assertion. An
uncertain ABox, denoted by Ay, is a finite set of probabilistic concept and
role assertions.

Ay c{Pr(a:C)=plae N;,CeC,pel0,1]}U
{Pr((a,b) : R)=p|a,be N;,Re R,pe[0,1]}

Each axiom ¢ € A is called an uncertain assertional axiom.

A tuple Ky = (Ty, Au) is called an uncertain knowledge base (KB), if and
only if it consists of a set of uncertain terminological axioms 7z, and a set
of uncertain assertional axioms Ayz,.

We will now reuse the knowledge base from example 4, re-define it under
uncertainty theory and add some further axioms.

Example 7

Let (Ng, N¢, Ny) be the following elementary description.

NR = {I‘}
N¢g = {A,B}
N;={a,b,c}

Then this is an uncertain knowledge base.
Tu=A{
Pr(-BC 3r.T) =1,
Pr(3r{a,p} C 1) =1,
Pr(ACB)=02

12



e

Ay =
Pr(a:(ANB)) =1,
Pr(b:(AUB)) =1,
Pr(c:Vr.A) =1,
Pr(c:B)=0.3,
Pr((a,c):r) =1,
Pr((b,c):r)=0.1,
Pr((c,c):r)=1
}

Ku = (Tu, Au)

So as in classical description logic, we want to know now, if a given uncertain
knowledge base is consistent. Therefore we have to find a probability distribu-
tion of the possible worlds that models all the given axioms. In a probability
distribution of possible worlds holds an axiom, if the sum of the probabilities
for the worlds that model the axiom is equal to the probability stated in the
axiom.

Definition 12: uncertain model

Let (Ng, N¢, N1) be an elementary description. Let R be the set of roles
over that elementary description and let C be the set of concepts over that
elementary description. Let 7 : I — [0, 1] be a probability distribution of
worlds over (Ng, N¢, Ny).

e Let C, D € C be two concepts and p € [0,1].
In 7 holds a PrCI (denoted 7 |= Pr(C C D) = p)

if and only if 3°7 o p (Z) = p.
e Let Ty be an uncertain TBox.

In 7 holds Ty, (denoted 7 = Tyy)
if and only if 7 = ® for every probabilistic concept inclusion ® € T;.

e Let a € Ny be an individual, C' € C be a concept and p € [0, 1].
In 7 holds a pr. concept assertion (denoted 7 = Pr(a: C) = p)

if and only if 3 -7, - 7m(Z) = p.

o Let a,b € Ni be two individuals, R € R be a role and p € [0, 1].
In 7 holds a pr. role assertion (denoted m = Pr((a,b) : R) = p)

if and only if 3 -7, ).z T(Z) =p.

e Let Ay be an uncertain ABox.
In 7 holds Ay (denoted 7 = Ay)

13



if and only if 7 |= ¢ for every probabilistic concept and role assertion

¢€Az,{.

e Let Ky = (T, Au) be an uncertain knowledge base.
In 7 holds the uncertain knowledge base (denoted 7 = Ky)
if and only if 7 = Ty and 7 | Ay.

If # E Ky, then 7 is called an uncertain model of K. If an uncertain
knowledge base Ky, is given and there exists at least one probability dis-
tribution of worlds m such that 7 = Ky and ),y 7(Z) = 1, then Ky is
called consistent.

For other logics, such as probabilistic logic, this definition is slightly differ-
ent. For example, > 7 o-pm(Z) > p or even maxzccpm(Z) > p could be
alternative conditions for concept inclusions.

We will now show that the uncertain knowledge base from example 7 is
consistent. We will do this by stating a probability distribution of worlds and
showing that it models the uncertain knowledge base. We will explain how to
find such a probability distribution afterwards.

Example 8

Let (Ng, N¢, N1) be the elementary description and Ky = (T, Ay) be the
knowledge base from example 7. Let Z;, Z, and Z3 be three interpretations
over (Ngr, N¢, Ny) with the following mappings.

I‘Il = (a7 C)a (b7 C)v (C7 C)}
AT = {a,b,c}
BIl = {a7 C}

= {(av C)a (C> C)}
A2 = {a,c}
B®2 = {a,b,c}

r = {(a,c), (c,¢)}
A% = {a,b,c}
B% = {a,b}
We let 7 : I — [0,1] now be the distribution of worlds with 7(Z;) = 0.1,

m(Zz) = 0.2, m(Z3) = 0.7 and n(Z) = 0 for all other interpretations
T eI\{T1, 15,15}

14



We will show that 7 |= K. First of all, 7 is a probability distribution since
0.1+0240.7=1,ie Y ;7(Z) = 1. And now we will show that in 7
holds each axiom of the given uncertain knowledge base K, i.e. the sum
of probabilities of 7 for all the interpretations that model the axiom must
be equal to the probability p of the axiom. We will only explain the details
for the uncertain axioms with a probability p < 1, where we really have
an uncertainty in the axiom. We will ignore all the possible worlds with
m(Z) = 0 since they don’t contribute to the sums. The previous section
shows how to prove if an interpretation models a (not uncertain) axiom,
so we won’t explain this again for each axiom, but only for those with a
probability p < 1.

Il ': —B E 31‘.T7 IQ ': —B E E'I‘.T, 2-3 'Z —B E dr. T

= Y 71D =7T)+7(T) +7(Ts) =1
IE=—-BC3r. T

Ty EIr{ab)CL, T 3rfablC L, ZykIrf{ab}C L

— Y m1@) =w(T) +7(T) +7(Ts) =1
IE3Ir{ap}CL

AT ={abc} Z {a,c} =B = I, £ALCB
A%z ={a,c} C{a,b,c} =B = T, =ALCB
A% ={a,b,c} Z {a, b}:BIS — T3 ALCB
= > w(@)=n(Ty) =02
TI=ACB
7, Ea: (ANB), IQIZa'(AHB), Zs =a: (AMB)

— Z —7T11)+7T(12)+7T(I3)—1
Z|=a:(ArB)

T, Eb: (AUB), 12|=b-(AuB), T; Eb: (AUB)

= Y w@)=rT)+7(T) +7(Ts) =1
T |=b:(ALIB)

11':C'VI'A IhEc:VrA, I3kEc:Vra

=3 Z —7TIl)+7T(IQ)+7T(I3)—1
Tl=c:Vr.A

15



ce{ac}=B" = T c:B
ce{abc}=B2 — T, =c:B
c¢{a,b} =B = T3f£c:B

= Y (I =n(T)+7(T) =03

Zl=cB

7, E (a,c) : 1, IQ|:(a c):r, I3k (a,c):r

= > (@) =n(T)+ (L) +7(Ts) =1
Tk=(a,c):r

(b,¢) € {(a,¢), (b,c),(c,c)} =r* = T; = (b,c):
(b,c) ¢ {(a,c),(c,c)} =r2 = T, }~ (b,c):r
(b,¢) ¢ {(a,¢),(c,c)} =17 = Tz £ (b,c):

r
= Y w(@)=n(T)=01
Ik=(b,c):r

7, E (c,c) iz, IQ'Z(C c):r, I3k (c,c):r

= > (@) =n(T)+ (L) +7(Ts) =1
T(c,c):r

This example proves the correctness of the model, but it doesn’t show how
to find such a model (probability distribution of worlds), but it is necessary to
find such a model to prove the consistency of an uncertain knowledge base. The
brute force method to solve the task of a consistency check for an uncertain
knowledge base would be to set up a huge system of linear equations

A-m=p

where 7 is the probability distribution of worlds we are looking for, A is a
matrix with |I| columns and one row for each axiom. Vector p contains the
probability values for each axiom. Each entry of the matrix A is 1 if and only
if the corresponding world Z is a model of the axiom denoted by the row, the
entry of the matrix is 0 otherwise. Since the matrix is a boolean matrix, there
exist algorithms for optimization. And there are several possibilities to exclude
some worlds and axioms from the beginning.

Example 9

We will take the setting of example 7 again. Let (Ng, N¢, Ni) be the ele-
mentary interpretation and let Ky = (T4, Ay) be the knowledge base from
example 7. There are more possible worlds than the three we mentioned
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in example 8. All possible worlds that are not excluded by taking into
account the inference of the not uncertain axioms (i.e. those with a proba-
bility of p = 1), we denote by Z;,Zs, . . . Z1¢ according to the following table.

(b,c) e (b,c) ¢ r?
be AT, beB? ccB? 7y Ty
b ¢ AT beB?, ceB? Ts Ty
bec Al b¢BL, ceB? 1 impossible
bec Al beB? c¢B? Ts 7
b¢AI,b€BI,C¢BI I Tio
be A, b¢ BL, c¢ B s impossible

For all these possible worlds is (a,a), (b,a), (c,a), (a,b), (b,b), (c,b) ¢ rZ,
(a,¢),(c,c) €rf, a,c € Aand a €B.

These possible worlds are determinable with algorithms for classical de-
scription logics, since the axioms with a probability of p < 1 are not taken
into account yet. We will now formulate the system of equations that corre-
spond to the three probabilistic axioms. For j € {1,...,10} is m; = 7(Z;).
Each axiom has the form Pr(+;) = p; and is represented in one of the rows.

Y1 =ACB p1 =0.2
Yo =c:B p2 =0.3
Y3 = (b,c):r p3 =0.1

An entry of the matrix is A;; = 1if Z; |=¢; and is A;; = 0 if Z; [~ ¢;. In
addition to the axioms we add a last equation at the end of the matrix to
make sure that all possible worlds sum up to 1.

1
2
3
T4 0.2

5 o 0.3 o
m |~ 01| P
7 1

8

—_ == O
— O =
_ o O O
— ==
— ===
-0 O
—= -0 O
——_ 0 O
—= O = =
o oo

9
710 |

If we take into account that all 7 must be probabilities, i.e. 0 < 7 < 1,
then for all a € [0,0.2] and all 5 € [0,0.7],

=01 a 8 0 0 0 0 0 02—a 07-4]

is a solution of this linear system of equations. And hence, we can infer for
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example the following knowledge.

Pr(b:AMB) <09
Pr(b:-B)=0.1
Pr(BC {a})=0

Especially the last result is interesting, since it says, that at least either b
or ¢ must be part of the concept B. This knowledge could not be inferred
by only taking into account the inference of classical description logics.

This brute force method needs too many resources and hence we will show

some other possibilities for inference in theorem 3. All rules from classical logics,

such as double negation, modus ponens, de morgans laws etc. are still valid in
uncertainty theory. But uncertainty theory suffers from the drowning problem

[20]. It means, that inferring on an inconsistent knowledge base is not possible
in the usual way (like in classical description logics). Since the uncertain model

takes into account all possible interpretations at once, there is no way to infer
on parts of the axioms without the contingency of destroying the whole intended
knowledge. There are only limited ways to infer the borders of possible ranges

for axioms.

Theorem 3

Let A be a domain. Let (Ng, No, N;) be an elementary description. Let
R be the set of roles and C be the set of concepts over that elementary
description. Let Ky = (T, Ay) be an uncertain knowledge base.

For uncertain axioms, the following is inferable.

For all C;D € C:
Pr(C C D) < mingea(Pr(z: DU-C))

For all C;D € C:
Pr(CC D) >max(0,14 3 cA(Pr(z: DU-C)—1))

For all a,b € Ny :
Pr((a,b):U) =1
For all a € Ny :
Pr(a:T)=1
For all a € Ny :
Pr(a:1)=0

For all A C Ny :
0 acA

Pr(a:A):{1 g A
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e Forallae N;,C,D € C:
Pr(a:CND)=Pr(a:C)+ Pr(a:D)— Pr(a:CUD)

e Forallae N;,C,D € C:
Pr(a:CnND)<min(Pr(a:C),Pr(a: D))
e Forallae N;,C,D € C:
Pr(a:CnND)>max(0,Pr(a:C)+ Pr(a:D)—1)
e Forallae N;,C,D € C:
Pr(a:CUD)=Pr(a:C)+ Pr(a:D)— Pr(a:CND)
e Forallae N;,C,D € C:
Pr(a: CUD)<min(l, Pr(a: C)+ Pr(a: D))
e Forallae N;,C,D e C:
Pr(a:CUD)>max(Pr(a:C),Pr(a: D))
e Forallae N;,C e C:
Pr(a:—-C)=1—-Pr(a:C)
e Forallae N;,Ce C,ReR:
Pr(a:VR.C) < mingen, (1 4+ Pr(z: C) — Pr((a,z) : R))
e Forallae N;,Ce C,ReR:
Pr(a:VR.C) > 1+ .y, (max(Pr(z:C),1 - Pr((a,z): R)) — 1)

e Forallae N;,Ce C,ReR:
Pr(a:3R.C)=1— Pr(a:VR.(=C))

For other types of uncertain logics, reasoning is also done in a different way.
For further readings see [3].

In the following last example we will show some simple inference for Pr(b : B)
that could be done for example 7 without computing the solution of the linear
system of equations.

Example 10

Let (Ng, N¢, N1) be the elementary description and Ky = (Ty, Ay) be
the knowledge base from example 7. Then the axiom Pr(b : B) > 0.1 is
inferable.

By using the inference rules from theorem 3, we know that

0.2 = Pr(A C B)
< mingen, (Pr(z : BU-4))
< Pr(b:BL—A)
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< min(1, Pr(b:B) 4+ Pr(b: —4))
< Pr(b:B) + Pr(b: —4A)

and on the other hand we also know

1= Pr(b:BLA)
< min(1, Pr(b:B) + Pr(b: 4))
< Pr(b:B)+ Pr(b:A)
=Pr(b:B)+1— Pr(b:—A)

which implies Pr(b : =A) < Pr(b: B). Thus it is 0.2 < Pr(b: B) + Pr(b :
—A) < 2. Pr(b: B) and this leads to the result Pr(b: B) > 0.1 by halving
both sides.

Notice that by solving the linear system of equations we get Pr(b: B) = 0.9,
which is much more informative than the presented result in example 10. But
the computation that leads to that result is way easier.

4 Vagueness Theory

This section describes a different approach. Again, each axiom gets assigned a
value between 0 and 1. But this time it is interpreted in a different way. The
value doesn’t state the probability of the axiom to be true or false, but the
axiom is imprecise itself.

In a vague description logic almost everything can be adapted from classical
description logic. There is a set of axioms that is interpreted by an interpreta-
tion function which leads to a model of a knowledge base. A knowledge base
is consistent, if there exists at least one model for it. And inference is possible
if every model of the knowledge base also models the inferred axiom. The only
difference is that the interpretation doesn’t map to a boolean value, but to a
numeric value between 0 and 1.

Therefore it is not intuitively clear how calculations on boolean values could
be extended to numeric values. Typically, there are four operators that define
a boolean logic.

a=true a=true a =false a = false
b=true b=1false b=true b= "{false

allb true false false false
allb true true true false
alb true false true true
- false false true true

These operators can be extended to numeric values. We denote them with
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small circles. For each operator, there should at least true correspond to 1 and
false correspond to 0, i.e. the following equivalent table should be fulfilled by
the operators.

a=1 a=1 a=0 a=0
b=1 b=0 b=1 b=0
a®b 1 0 0 0
a®b 1 1 1 0
avb 1 0 1 1
Sa 0 0 1 1

There is no way to define such operators in a way that usual behaviors of
boolean variables are extendable to the numeric values in-between 0 and 1. For
example, it is impossible that © © z = # (Double Negation), x <y — Oy <
©x (monotonically decreasing Negation), x®x = x (Tautology) and Sz dx = 1
(Law of Excluded Middle) occur simultaneously. [17]

Each definition for these operators leads to a different logic, there are useful
ones for several applications. We will only introduce the Goedel Logic in this
paper, which is defined in the following way.

Definition 13: operators

For values a,b € [0, 1], the Goedel operators ®, @, > and & are defined in
the following way.

a ® b = min(a,b)
a ® b =max(a,b)

1 a<b
a>b=
{b a>b

oa — 1 a=0
“J0 a>0

The following definition of a vague interpretation would be the same with
other valid operators.

Definition 14: vague interpretation

Let (Ng, N¢, Ni) be an elementary description. Let R be the set of roles
over that elementary description and let C be the set of concepts over that
elementary description.

A function

B RUCUN; — {(AT x AT) = [0,1]} U {(A™) = [0,1]} U ATY
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together with an arbitrary set AZv is called a vague interpretation if and
only if

o Rv ¢ {(AI" X AI") — [0, 1]} forall R€ R
o CTv e {(ATV) = [0,1]} for all C € C
o a?v e ATV for all a € N;

and the following conditions hold for every R € R, C,D € C and A =
{ai,...,a,} C Ny with any z,y € ATV and a € N;.

(universal role) UL (z,y) =1
(top concept) Tv(z) =1
(bottom concept) 17 =0

1 A
(set of individuals) Av(a) =<7 S
0, a¢ A

conjunction) C D) (z) = CT(z) ® D™ ()

disjunction) CUD)® (z) = CT(z) ® D™ ()

( (

( (

(negation) (- (z) = 00T (2)

(universal restriction) (VR.C)™ (z) = minyeaz, (1% (z,y) > CT (y))
(existential restriction) (IR.C)™ (z) = max,cazy (1™ (z,y) ® C7¥(y))

A tuple 7y = (AI", -IV) is called a vague interpretation over (Ng, No, Ny)
with domain AZv.

We will now construct a vague interpretation that is equivalent to the inter-
pretation of example 2. Again we will assume that AZv = N; and will not take
the universe of discourse into account, but only the named individuals instead.

Example 11

Given the following elementary description.

NR = {I‘}
N¢g = {A7B}
Ny ={a,b,c}

A vague interpretation Zy, = (AI"7 ~IV) over (Ng, N¢, Ni) could be defined
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by the following mappings.

r*v(a,a) =0 rV(a,b) =0 r c)=1
™V (b,a) =0 ™V (b,b) = 0 v (b,c) =0
™ (c,a) =0 ™ (c,b) =0 ™ (c,c)=1
Av(a) =1 AB(b) =0 A () =1
BV(a) =1 BXV (b) =0 BV (c) =0

And again, the values for composite concepts are already determined by the
definition of the vague interpretation on the elementary description. For
the composite concepts of example 3, we get the following results.

(AMB)™ (z) = AT (z) © B (2)
1®1=min(1,1)=1 =a
={0®0=min(0,0) = 0 b
1®0 =min(1,0) =0 c
(BU-4)" () = B™ (z) @ (0A™ (2))
1® (61) = max(1,0) =1 r=a
=406® (80) =max(0,1) =1 =b
0@ (©1) = max(0,0) =0 =

(Fr.a)™ (z) = maxyen,; (TI"
max(0®1,0®0,1®1) =max(0,0,1) =1
=(max(0®1,0®0,0® 1) = max(0,0,0) =0
max (0®1,0®0,1® 1) = max(0,0,1) =1

(z,y) ® A™ (1))

(vr.({a} NB)® (2) = minyen, (r™ (z,y) > ({a}™ (v)
min (0> (1@ 1),0> (0 0),1> ( ®©0)) =0
=<min(0>(1®1),0(000),0-(050)) =1
min (0> (1©1),0>(0©0),1>(0©0)) =0

=D
& B™(y)))
r=D>b

We will now continue with the definition of a vague knowledge base. A
vague knowledge base consists of axioms as before. The axioms are extended
by a value, that states the degree of truth of an axiom. Notice that it is not the
probability of an axiom to be true, but the intensity or precision of the axioms
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statement.
Definition 15: vague axiom

Let C be a set of concepts. For every two concepts C, D € C and every
p € [0,1], the expression C C D = p is called a vague concept inclusion
(VCI). A vague TBox, denoted by Ty, is a finite set of VCls.

Tvc{CED=p|[C,DeC,pe[01]}
Each axiom ® € 7y is called a vague terminological axiom.

Let (Ng, N¢, Ni) be an elementary description. Let R be the set of roles
and C be the set of concepts over that elementary description. For every
individual a € Ny, every concept C' € C and every p € [0, 1], the expression
C(a) = p is called a vague concept assertion. For every two individuals
a,b € Np, every role R € R and every p € [0, 1], the expression R(a,b) =p
is called a vague role assertion. A vague ABox, denoted by Ay, is a finite
set of vague concept and role assertions.

Ay c{C(a)=p|ae N;,CeC,pe|0,1]}U
{R(a,b) =p|a,be Nj,RecR,pe0,1]}

Each axiom ¢ € A is called a vague assertional axiom.

A tuple Ky = (Ty, Ay) is called a vague knowledge base (KB), if and only
if it consists of a set of vague terminological axioms Ty, and a set of vague
assertional axioms Ay.

Since the vague interpretation highly depends on the choice of the operators,
it is a rather difficult task for an author of a knowledge base to state a precise
value for the degree of precision of an axiom. Therefore most vague logics
implement a fuzzy model that allows to formulate imprecise statements with a
fuzzy degree of that imprecision. But in this paper we will only allow statements
with a single value between 0 and 1 for the vagueness.

Example 12

Let (Ng, N¢, Ny) be the following elementary description.

NR = {I‘}
Ne = {A,B}
Nr ={a,b,c}
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Then this is a vague knowledge base.

T =A{
-BLC dr.T =1,
Ir{a,bp} C 1L =1,

We will now define what consistency means for a vague knowledge base. The
definition is very similar to classical description logic. It is extended so that not
only the boolean value must fit to the model, but also the correct value for the
vagueness.

Definition 16: vague model

Let (Ng, N¢, Ni) be an elementary description. Let R be the set of roles
over that elementary description and let C be the set of concepts over that
elementary description. Let 7y, = (AT, .2v) be a vague interpretation over
(Ngr, No, Nr).

e Let C, D € C be two concepts and p € [0,1].
In Zy holds a vague concept inclusion (denoted Zy = C C D = p)
if and only if min, cz, (C’IV (r)> DI (x)) =p.

e Let 7y be a vague TBox.
In Zy, holds 7y (denoted Zy = Ty)
if and only if Zy, = ® for every vague concept inclusion ® € Ty.

e Let a € Ny be an individual, C' € C be a concept and p € [0, 1].

In Zy holds a vague concept assertion (denoted Zy = C(a))
if and only if C?v(a?v) = C(a).

e Let a,b € Ny be two individuals, R € R be a role and p € [0, 1].
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In Zy, holds a vague role assertion (denoted 7y, = R(a, b))
if and only if RT(a®v,b%v) = R(a,b).

e Let Ay, be a vague ABox.
In Zy holds Ay, (denoted Z = Ay)
if and only if 7y, = ¢ for every vague concept and role assertion ¢ € A.

e Let Ky = (Ty, Ay) be a knowledge base.
In Zy holds the knowledge base (denoted Zy = Ky)
if and only if Zy, = Ty and Ty, = Ay.

If 7y, E Ky, then Zy is called a model of Ky,. If a vague knowledge base
Ky is given and there exists at least one vague interpretation Zy, such that
Iy = Ky, then Ky is called consistent.

The vague interpretation Zy, from example 11 is not a model of the knowl-
edge base K from example 12. One can easily see this by looking at the ax-
iom (AUB)(b) = 1. Since ATv(b) = 0 and BT (b) = 0, it is (ALB)™ (b) =
AV() @BV () =00 0=04# 1.

We will now give an example of another vague interpretation that is a model
of the knowledge base from example 12.

Example 13

Let (Ng, Nc, N1) be the elementary description and Ky = (7y,.4y) be the
knowledge base from example 12. Let now Zy be a vague interpretation
over (Ngr, N¢, Ny) with the following mappings.

™ (a,a) =0 ™ (a,b) =0 ™ (a,c) =1
™ (b,a) =0 2V (b,b) = 0 v (b,c) = 0.1
™ (c,a) =0 ™ (c,b) =0 ™ (c,c)=1
Ava)=1 Av(b) =1 Avc)=1
BV(a) =1 B%(b) = 0.2 B™V(c) = 0.3

We will now show, that Zy, = Ky by showing that Z,, = ® for each vague
terminological axiom ® € Ty, and then showing that Zy = ¢ for each vague
assertional axiom ¢ € Ay.

minsen; (B (2)> (Gr.T)™ (2))
= mina:eNI (@BIV (33) > maXye N, (IIV (1‘, y) ® T (y)))
= Minge N, (9BIV (x) > (z, C))

=min(©1>1,60.2>0.1,20.3> 1)
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=min(1,1,1)
=1
mingen, ((3r.{a, o)™ (@) > 17 (2))
= mianN} (maXyGNI (rIv (xv y) ® {avb}Iv (y)) > J-IV (x))
=min (0>0,0>0,0>0)
=0
mingen, (A7 (z) > B (z))
—min(151,150.2,150.3)
=0.2

B™v 0.3
rV(a,c) =1
™V (b,c) = 0.1
r(c,c) =1

This is also the only vague interpretation that models the given vague knowl-
edge base in Goedel logic. For some other logics, such as Lukasiewicz logic, the
knowledge base is not even consistent. We don’t show it here, but want to
strengthen again that vague logic highly depends on the chosen logic and this
has to be taken into account when modeling a knowledge base.

Nevertheless, the other task for knowledge bases, the inference of new knowl-
edge, exists in vagueness theory, too. It works almost like in classical description
logic [4].

Definition 17: inference for vague knowledge bases

Let (Ng, N¢, N1) be an elementary description. Let R be the set of roles
over that elementary description and let C be the set of concepts over that
elementary description. Let Ky = (Ty,.Ayp) be a consistent vague knowl-
edge base.

A vague terminological axiom ® € {C T D =p | C,D € C,p € [0,1]}

is a logical consequence of Ky, denoted by Ky = @ if and only if for all
Iy | Ky also Iy = (Ty U {@}, Ay).
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A vague assertional axiom ¢ € {C(a) =p|a € N;,C € C,p € [0,1]} U
{R(a,b) =p | a,be N;,C € C,p € [0,1]} is a logical consequence of Ky,
denoted by Ky | ¢, if and only if for all Zy, = Ky also Zy E (Ty, Ay U
{o}).

In the last example we present axioms that are inferable from example 12.
Example 14

Let (Ng, N¢, N) be the elementary description and Ky = (Ty,.4y) be the
knowledge base from example 12. Then the following axiom is inferable.

B(b) = 0.2
This logical consequence is obvious when looking at the axiom A T B = 0.2.
0.2 = mingen, (A (z)>B™ (z))
= min (AIV (a) > BV (a), ATV (b) > BT (b), ATV (c) > BTV (c))
= min (1> 1,47 (b) >B™ (b), 1> 0.3)
=A™ (v)>B™v(b)

_J! AT (b) < BT (b)
~|B™(b)  ATV(b) > BTV(b)
=B"v(b)

5 Conclusion

We demonstrated three types of logic. The classical description logic ALC can
manage knowledge up to a certain degree, the amount of composite concepts
and roles is very limited, but it is easy to handle. We extended ALC by the
management of uncertainty and vagueness respectively. For both, uncertainty
and vagueness theory, we chose the easiest possible way to extend the knowledge
base by assigning only a single value between 0 and 1 to each axiom. We showed
what consistency means in each logic and how new knowledge could be inferred.
We hinted to further extensions of those logics that allow to store and manage
knowledge with higher complexity. There are also several algorithms to solve or
ease certain problems.
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