Modeling Cardinal Direction Calculus in a Fuzzy Description Logic

A Comparison of Different Approaches

Martin Unold & Christophe Cruz

Outline

- Motivation (crisp)
- Motivation (fuzzy)
- Inference Rules
- Test Results

Typical Situation

- (lyon,marseille): northOf
- (lyon,france): within
- (marseille,avignon): closeTo

- (lyon,point2): isHere
- (france, region1): isHere

Model in DL

• <(lyon,marseille): northOf, 70%>

• <(lyon,marseille): northOf, 70%>

• This is NOT a probability !!!

What is East?

What is Close?

Where is Point P?

- P is northOf A (60%)
- P is westOf B (70%)
- P is closeTo C (80%)

Cone Model

Projection Model

Inference Rules

- A is east of B
- B is east of C

=> A is east of C ?

Inference Rules

- A is east of B (x %)
- B is east of C (y %)

=> A is east of C (x+y? min(x,y)? ...)

Fuzzy Connectives

	Lukasiewicz Logic	Product Logic	Goedel Logic
$\ominus \phi =$	$1-\phi$	$\begin{cases} 1 & \text{if } \phi = 0 \\ 0 & \text{if } \phi > 0 \end{cases}$	$\begin{cases} 1 & \text{if } \phi = 0 \\ 0 & \text{if } \phi > 0 \end{cases}$
$\phi_1 \oplus \phi_2 = \phi_1 \otimes \phi_2 = \phi_2$	$\min(\phi_1 + \phi_2, 1)$ $\max(\phi_1 + \phi_2, -1, 0)$	$\phi_1 + \phi_2 - \phi_1 \cdot \phi_2$	$\max(\phi_1, \phi_2)$ $\min(\phi_1, \phi_2)$
$\phi_1 \otimes \phi_2 =$ $\phi_1 \triangleright \phi_2 =$	$\min(1 - \phi_1 + \phi_2 - 1, 0)$	$\psi_1 \cdot \psi_2$ min $\left(1, \frac{\phi_2}{2}\right)$	$ \int 1 \text{if } \phi_1 \leq \phi_2 $
Ψ1 ° Ψ2	$(1 - \psi_1 + \psi_2, 1)$	$(1, \phi_1)$	$\phi_2 \text{if } \phi_1 > \phi_2$

Fuzzy Connectives

	Lukasiewicz Logic	Product Logic	Goedel Logic	
$\ominus \phi =$	$1-\phi$	$\begin{cases} 1 & \text{if } \phi = 0 \\ 0 & \text{if } \phi > 0 \end{cases}$	$\begin{cases} 1 & \text{if } \phi = 0 \\ 0 & \text{if } \phi > 0 \end{cases}$	
$\phi_1 \oplus \phi_2 =$	$\min(\phi_1 + \phi_2, 1)$	$\phi_1 + \phi_2 - \phi_1 \cdot \phi_2$	$\max(\phi_1, \phi_2)$	
$\phi_1 \otimes \phi_2 =$	$\max(\phi_1 + \phi_2 - 1, 0)$	$\phi_1 \cdot \phi_2$	$\min(\phi_1, \phi_2)$	
		(, 40)	1 if $\phi_1 < \phi_2$	
$\phi_1 \triangleright \phi_2 =$	$\min(1-\phi_1+\phi_2,1)$	$\min\left(1, \frac{\phi_2}{\phi_1}\right)$	$\begin{cases} \phi_2 & \text{if } \phi_1 > \phi_2 \end{cases}$	

Inference Rules

Axiom	cone-based	projection-based
$E \circ E \sqsubseteq E$	G	G
$E \sqcap N \sqsubseteq NE$	G	G
$E \circ N \sqsubseteq NE$	×	×
$\mathbf{E}^- \sqsubseteq \mathbf{W}$	✓	\checkmark

Axiom	linear $(\alpha > 0)$	linear $(\alpha = 0)$	exponential	fractional
$\texttt{Near} \circ \texttt{Near} \sqsubseteq \texttt{Near}$	×	L	P	Р
$Near^- \sqsubseteq Near$	✓	\checkmark	\checkmark	\checkmark

(a) Complete dataset: Black lines state available relative information. Green dots represent absolute information.

(b) Damaged dataset: Only $\tau = 60\%$ of absolute information is available and $\rho = 60\%$ of relative data is removed.

(a) equal distribution: f(p) = 1

(b) centered distribution: $f(p) = (2 * p_x (1)^2 + (2 * p_y - 1)^2$ $p_x - 1)^2 + (2 * p_y - 1)^2$

(c) bordered distribution: f(p) = 2 - (2 *

Cardinal Directions

Imprecision

Cardinal Directions

Known Points

Nearness

Nearness

Thank You for Your Attention!

Martin Unold & Christophe Cruz